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Abstract

INTRODUCTION: The progression of Alzheimer’s disease (AD) has been linked to two

metabolic networks, the AD-related pattern (ADRP) and the default mode network

(DMN).

METHODS: Converting and clinically stable cognitively normal subjects (n = 47) and

individuals with mild cognitive impairment (n= 96) underwent 2-[18F]fluoro-2-deoxy-

D-glucose (FDG) positron emission tomography (PET) three ormore times over 6 years

(nscans =705). Expression levels forADRPandDMNweremeasured in each subject and

time point, and the resulting changeswere correlatedwith cognitive performance. The

role of network expression in predicting conversion to dementia was also evaluated.

RESULTS: Longitudinal increases in ADRP expression were observed in converters,

while age-related DMN loss was seen in converters and nonconverters. Cognitive

decline correlated with increases in ADRP and declines in DMN, but conversion to

dementia was predicted only by baseline ADRP levels.

DISCUSSION: The results point to the potential utility of ADRP as an imaging

biomarker of AD progression.

KEYWORDS

Alzheimer’s disease-related pattern, conversion, default mode network, FDG PET, mild cognitive
impairment

1 BACKGROUND

Alzheimer’s disease (AD) is characterized by abnormal accumulation

of amyloid β (Aβ) and tau protein in the brain.1 In 2018, the National

Institute on Aging and Alzheimer’s Association (NIA-AA) proposed a

research framework that defines AD based solely on biomarker find-

ings. An individual’s biomarker profile is on the Alzheimer’s continuum

if the presence of amyloid pathology (A+) is demonstrated either with

cerebrospinal fluid (CSF) analysis or positron emission tomography

(PET) imaging.2 Alzheimer’s network pathology can be demonstrated

using structural and functional magnetic resonance imaging (MRI)

techniques3 as well as metabolic imaging with 2-[18F]fluoro-2-deoxy-

D-glucose (FDG) PET.4,5 Spatial covariancemapping ofmetabolic brain

images from AD patients and healthy control subjects has revealed
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reproducible disease-related patterns characterized by reductions in

the precuneus and temporoparietal regions, associated with relative

increases in the cerebellum, pons, and primary sensorimotor cortex.3,5

Indeed, a consistent AD-related metabolic pattern, termed ADRP, has

been identified in multiple independent populations,5–8 including a

recent sample of biomarker-confirmed patients.9 Of note, the covari-

ance mapping approach allows expression levels (subject scores) for

disease patterns such as ADRP to be quantified in individual subjects

atmultiple time points.5,10 Indeed, ADRP expression has been found to

correlate with cognitive performance inmultiple AD samples.6,7,9

While AD patients typically exhibit significant elevations in ADRP

expression, which can be helpful in differentiation from other common

dementia syndromes,11 othernetworksmayalsobe involved in this dis-

ease. The default mode network (DMN) is relevant in this regard. This

network is characterizedby relatively increased resting state activity in

themedial frontal cortex, posterior cingulate gyrus, andprecuneus, and

in temporal regions, which deactivates during task performance.12,13

The DMN has been topographically linked to amyloid pathology in

AD,14 and expression levels for the corresponding metabolic network

are consistently reduced in patients diagnosed with this disorder.15

That said, the time course of ADRP and DMN expression in individuals

withmild cognitive impairment (MCI) is currently unknown.

To this end, we measured longitudinal changes in ADRP and DMN

expression in FDG PET scans from healthy control subjects and inMCI

patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database. In addition to assessing the effect of apolipoprotein E (APOE)

ε4 allele and CSF amyloid status on the trajectory of the two networks,

weexamined the relationshipof their respective timecourseswith cog-

nitive change. Lastly, we determined the prognostic value of ADRP and

DMN as predictors of future transition to dementia.

2 METHODS

2.1 Participants

Participants data and their scans were obtained from the ADNI

database on December 9, 2021 (https://adni.loni.usc.edu). ADNI was

launched in2003as apublic-privatepartnership, ledbyPrincipal Inves-

tigator Michael W.Weiner, MD. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), PET, other bio-

logical markers, and clinical and neuropsychological assessment can be

combined tomeasure the progression ofMCI and early AD.

We used the ADNIMERGE package16 to extract data on age, sex,

years of education, Aβ42, total tau (tTau), and phosphorylated tau

(pTau) CSF levels at baseline, Mini-Mental State Examination (MMSE)

scores, and neuropsychological composite scores for memory,17 exec-

utive function,18 and language.19

We included 143participantswith three ormore available FDGPET

scans. The selection flowchart is presented in Figure 1. The two clinical

groups were stratified based on their clinical conversion status: stable

CN (sCN) and converter CN (cCN) if they developed MCI and stable

MCI (sMCI) and converterMCI (cMCI) if they developed dementia dur-

RESEARCH INCONTEXT

1. Systematic Review: Alzheimer’s disease is accompanied

by changes in functional brain networks. Previous stud-

ies showed the appearance of a disease-related network,

termed AD-related pattern (ADRP), and the loss of a

major resting state network, a default mode network

(DMN). The contribution of each to disease progression

has not been studied in detail.

2. Interpretation: Our findings, based on a large longitudi-

nal imaging dataset, show progressive increases in ADRP

expression levels in cognitively normal participants who

subsequently develop mild cognitive impairment (MCI)

and in individuals with MCI who later develop demen-

tia. Longitudinal loss of DMN expression was observed

in stable and converting participants but was mostly

related to aging. That said, changes inbothnetworkswere

associated with progressive cognitive decline.

3. Future Directions: This study supports the use of ADRP

as a metabolic imaging biomarker of disease progression

and as a predictor of dementia in patients withMCI.

ing follow-up. Only amyloid positive (A+), defined as CSF Aβ42 < 880

pg/mL,2,20 cCN, and cMCI were included. Individuals with one or more

APOE ε4 alleles (i.e., ε2/ε4, ε3/ε4 or ε4/ε4) were considered as being

APOE ε4 positive.

2.2 Image preprocessing and analysis

Patients from the ADNI cohort underwent imaging at different

sites, as described in more detail elsewhere (https://adni.loni.usc.edu/

methods/pet-analysis-method/pet-analysis/). Coregistered, averaged,

standardized images with uniform voxel size and resolution were

obtained from ADNI. The preprocessing procedure is described in

more detail at the ADNI website. Coregistered, averaged scans were

obtained by averaging six or four 5-min frames. Scans were then reori-

ented into a standard 160 × 160 × 96 voxel image grid with 1.5-mm

cubic voxels. Scans were intensity normalized using a subject-specific

mask so that the average of all voxels within the mask was exactly one.

Lastly, each imagewas filteredwith a scanner-specific filter function to

produce images of a uniform isotropic resolution of 8 mm full width at

halfmaximum. FDGPET scanswere origin corrected and preprocessed

with SPM12 (Wellcome Trust Centre for Neuroimaging, Institute of

Neurology, London,UK) runningonMATLABR2019a (MathWorks Inc.,

Natick, MA, USA) using an in-house pipeline, as described previously.9

We then computed expression values (subject scores) for previ-

ously validated ADRP9 and DMN15 patterns for each subject and

time point using the forward application routine in ScAnVP (soft-

ware available from The Feinstein Institutes for Medical Research
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F IGURE 1 Selection flowchart.We included participants with information available on apolipoprotein E (APOE) status and cerebrospinal fluid
(CSF) amyloid (A) whowere either cognitively normal (CN) or hadmild cognitive impairment (MCI) at baseline, and with three or more longitudinal
2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDGPET) scans without major structural changes or postprocessing artifacts.
We excluded time points/scans taken 7 ormore years from baseline because of the small number of such scans that were available. To reduce the
biological heterogeneity, we excluded A–converters, because conversion toMCI/dementia in these subjects is unlikely to be caused by AD.2 sCN,
stable CN; cCN, converter CN; sMCI, stableMCI; cMCI, converterMCI. *Missing baseline scan or fluctuating clinical diagnosis, for example, from
CN toMCI and back to CN.

at https://feinsteinneuroscience.org/). Additionally, for validation, we

computed expression values for an analogous ADRP identified previ-

ously in an analysis of 20 AD patients and 20 healthy control subjects

from the ADNI database6 (Supplementary Materials A). The result-

ing raw scores were standardized (z-score) based on the distribution

of values computed in an independent group of 53 CN subjects (age

73.8 ± 6.5 years, MMSE = 29.0 ± 1.2) from the ADNI database with

only a single FDG PET scan, without pathological CSF changes. Addi-

tionally, we used ordinal trends/canonical variates analysis (OrT/CVA),

a computational algorithm based on supervised principal component

analysis5,21 to identify consistent patterns of longitudinal change in the

MCI group (SupplementaryMaterials B). The resulting AD progression

pattern (ADPP) was compared to the ADRP and DMN topographies

using voxel-wise correlations as described elsewhere.22

2.3 Statistical analysis

We used analysis of variance (ANOVA) with post hoc pairwise t-tests

incorporating the Holm correction for multiple comparisons for con-

tinuous variables, and for categorical variables, the Kruskal-Wallis

rank-sum test and post hoc pairwise Fisher’s exact test with a Holm

correction for multiple comparisons were used. We used the lme4

package23 toperforma linearmixed-effects (LME) analysis of the longi-

tudinal relationship of conversion status, APOE ε4, and amyloid status,

with ADRP and DMN expression values. All LME models included a

group × time interaction itemwith random intercepts for each individ-

ual, adjusted for age, sex, and group status. To assess the relationship

between cognitive changes over time and pattern expression values,

we used LME models with neuropsychological performance measures

such asMMSE andmemory, executive function, and language compos-

ite scores as outcome variables. Pattern expression × time interaction

terms were included in the models, with random intercepts for each

individual, adjusted for baseline ADRP/DMN expression, age, sex, and

education years. To assess the significance of the interaction term,

type II ANOVA with Satterthwaite’s approximation for the calculation

of degrees of freedom was performed using the lmerTest package.24

When ANOVA revealed a significant interaction effect, we computed

the effect of time on pattern expression values per condition (i.e.,

the estimated marginal means of linear trends) and compared the
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differences between slopes in a pairwise fashion with Tukey’s correc-

tion for multiple comparisons using the emmeans package.25

To evaluate the risk of conversion from MCI to dementia, we

performed Cox proportional hazard (PH) regression analyses. For con-

verters, the time-to-event variable was in the number of months from

the baseline assessment to the first assessment at which the subject

received the diagnosis of dementia; for clinically stable participants,

the variable was the number of months from baseline to last follow-

up. Univariate andmultivariateCoxPH regressionwas performedwith

age at baseline (years) and dichotomized sex (male = 1), APOE ε4 sta-

tus, pTau (> 21.8 pg/mL), and tTau (> 245 pg/mL) as predictors, along

with ADRP and DMN expression dichotomized into “high” or “low”

categories according to themedian value for each pattern.

For validation (Supplementary Materials A), longitudinal rela-

tionships and predictions based on the recently published ADRP

topography from a completely independent dataset9 were confirmed

using an analogous pattern identified previously from the ADNI

database.5,6

All statistical analyses were conducted in RStudio version 1.3.1093,

R version 3.6.0,26 and figures were produced with the ggplot227 and

survminer28 packages. Results were considered significant at p < .05

(two-tailed).

3 RESULTS

The final sample included 40 sCN (202 scans), seven A+ cCN (35

scans), 60 sMCI (275 scans), and 36 A+ cMCI (193 scans). The groups

did not differ in age (F(3, 139) = 0.9, p = .43) or sex distribution

(χ2(3) = 0.3, p = .96) but did differ significantly in CSF amyloid positiv-

ity (χ2(3) = 45.1, p < .001) and APOE ε4 status (χ2(3) = 15.3, p = .002).

Baseline demographic information for the subjects is provided in

Table 1.

3.1 Group differences in ADRP and DMN
expression

We observed a significant group × time interaction effect on ADRP

expression values adjusted for age, group status, and sex (p< .001). Age

(p = .02) and group status (p < .001) were significant as confounders,

whereas sexwas not significant (p= .95). The rate ofADRPprogression

(Figure 2A, top) was fastest in the cMCI group (β = 0.34, 95% confi-

dence interval (CI) [0.28, 0.39], p < .001), followed by cCN (β = 0.18

[0.08, 0.27], p < .001), sMCI (β = 0.05 [0.01, 0.10], p = .01), and sCN

(β = 0.03 [−0.02, 0.08], p = .26). Pairwise comparison of the groups

showed that ADRP progression was faster in cMCI compared to cCN

(p = .02), sMCI (p < .001) and sCN (p < .001). ADRP progression was

significantly faster in cCN compared to sCN (p = .03) but exhibited

only a trend in comparison to sMCI (p = .08). The difference in ADRP

progression rates for sCN and sMCI was not significant (p= .81).

The group × time interaction on DMN expression adjusted for age,

group status, and sexwas not significant (p= .73). Agewas a significant

confounder (p< .001), group status wasmarginal (p= .06), and sexwas

not significant (p = .83). Longitudinal changes in DMN expression did

not reach significance in any of the groups (sCN p = .43; cCN p = .09;

sMCIp= .38; cMCIp= .15). In anage-unadjustedmodel (Figure2A,bot-

tom), we observed a significant decline in DMN expression scores in all

four groups; sCN (β = −0.09 [−0.13, −0.04], p < .001), cCN (β = −0.15

[−0.24, −0.06], p = .001), sMCI (β = −0.05 [−0.08, −0.02], p = .003)

and cMCI (β = −0.11 [−0.15, −0.06], p < .001). Pairwise differences in

slopes were not significant in this model (p> .18).

3.2 Effect of APOE ε4 allele status on longitudinal
changes in ADRP and DMN expression levels

Significant APOE ε4 status × time interaction effects were not present

on either ADRP or DMN expression in the sCN, cCN, or sMCI groups

TABLE 1 Baseline demographics.

Stable CN Converter CN StableMCI ConverterMCI p

N (scans) 40 (202) 7 (35) 60 (275) 36 (193)

Age 73.7± 6.0 77.3± 3.2 72.8± 7.4 73.9± 7.9 .43

Sex (f/m) 14/26 3/4 20/40 13/23 .96

MMSE 28.9± 1.2 29.1± 0.9 28.1± 1.5 27.0± 1.7 <.001bcef

Memory 0.96± 0.48 0.59± 0.50 0.28± 0.54 −0.25± 0.43 <.001bcef

Executive function 0.64± 0.79 0.23± 0.52 0.35± 0.68 −0.14± 0.87 <.001cf

Language 0.71± 0.55 0.28± 0.69 0.28± 0.58 0.00± 0.68 <.001bc

Amyloid (pos/total) 12/40 (30%) 7/7 (100%) 31/60 (52%) 36/36 (100%) .002acdf

APOE ε4 (pos/total) 11/40 (28%) 6/7 (96%) 24/60 (40%) 23/36 (64%) .001ac

Abbreviations: cMCI, converter mild cognitive impairment; sMCI, stableMCI; cCN, converter cognitively normal; sCN, stable CN;MMSE, Mini-Mental State

Examination; APOE, apolipoprotein E. All data presented asmean± SD.
aPost hoc significant: sCN< cCN.
bPost hoc significant: sCN< sMCI.
cPost hoc significant: sCN< cMCI.
dPost hoc significant: cCN< sMCI.
ePost hoc significant: cCN< cMCI.
fPost hoc significant: sMCI< cMCI.
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F IGURE 2 (A) Changes in expression values over time for Alzheimer’s disease-related pattern (ADRP, top) andmetabolic default mode
network (DMN, bottom) in cognitively normal (CN) individuals and in those withmild cognitive impairment (MCI). In both groups, individual
subjects were stratified by conversion status (seeMethods). (Dotted gray lines represent the time course of network expression in each subject.
Green lines are ADRP× time slopes from a linear mixed-effects model adjusted for age, sex, and group status. Blue lines are DMN × time slopes
from a linear mixed-effects model adjusted for sex and group status. sCN, stable CN; cCN, converter CN; sMCI, stableMCI; cMCI, converterMCI.)
(B) Bubble plots of estimated rate of ADRP (top) and DMN (bottom) progression for each of the groups. In these displays, themean rate
(proportional to β) is placed at the center of the corresponding disc; the diameter is proportional to the standard error of the estimate for each
group.

(Table S1, Figures SA1 and SA2). However, a significant APOE ε4 sta-

tus × time interaction effect on ADRP expression was present in cMCI

(p < .001), with faster progression (p = .002) in patients with one or

more APOE ε4 alleles (β= 0.46 [0.38, 0.54], p< .001) compared to their

APOE ε4 negative counterparts (β = 0.31 [0.22, 0.40], p < .001) (Table

S1A). By contrast, the longitudinal decline in DMN expression in cMCI

did not differ significantly (p = .80) for APOE ε4-positive and negative

patients (Table S1B).

3.3 Effect of amyloid on ADRP and DMN
expression

Given that the converter groups included only A+ subjects (see

Methods), the effects of amyloid on longitudinal changes in network

expression were assessed only in the clinically stable groups. Thus, a

significant amyloid × time interaction effect on ADRP expression was

observed in sCN (p = .04), with faster progression (p = .005) in A+

(β = 0.15 [0.05, 0.25], p = .004) compared to A− (β = −0.00 [−0.06,

0.06], p = .93) (Table S2A, Figure SA3). Amyloid status did not affect

ADRP progression in the sMCI group (p= .226), but we observed a sig-

nificantmain effect of amyloid status onADRPexpression (p= .026). In

contrast to ADRP, amyloid status did not affect longitudinal changes in

DMNexpression in either group (Table S2B, Figures SA3 and SA4).

3.4 Relationship of longitudinal changes in ADRP
and DMN expression to neuropsychological
performance

Significant groupdifferenceswereobserved at baseline forMMSE (F(3,

139) = 12.1, p < .001) and memory (F(3, 138) = 38.3, p < .001), execu-

tive function (F(3, 139) = 6.9, p < .001), and language composites (F(3,

139)= 9.1, p< .001) (Table 1). Over time, a significant decline inMMSE

scoreswas noted in cMCI (p<.001), but not in the other groups (p> .29;

Figure SA5). Significant declines in memory, executive function, and

language composites were observed in cCN and cMCI (p <.02 for each

group) but not in sCN and sMCI (p> .10; Table 2, Figure SA6).

Adjusting for age, sex, and education we found a significant main

effect ofADRPonmemory composite scores in the sCNgroup. A signif-

icant relationship betweenADRP× time interaction effects andMMSE

was also observed in this group (β = −0.15 [−0.24, −0.05], p = .004;

Table S3).

Adjusting for age, sex, and education we found no main effect of

ADRP and DMN expression on MMSE or neuropsychological compos-

ite measurements in the cCN (all p>.24). However, significant ADRP ×

time interaction effects were observed in this group on executive func-

tion (β = −0.07 [−0.12, −0.02], p =.019) and on language composite

scores (β = −0.06 [−0.10, −0.02], p =.004). Similarly, we observed sig-

nificantDMN× time interaction effects on executive function (β=0.11
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[0.04, 0.19], p =.011) and language composite scores (β = 0.08 [0.01,

0.13], p=.017) in this group (Table 3).

Adjusting for age, sex, and education we found a significant main

effect of ADRP on MMSE and executive function composite scores in

the sMCI. Significant relationships between ADRP × time interaction

effects and composite scores for memory (β = −0.03 [−0.05, −0.00],

p=.02) and language (β=−0.03 [−0.05,−0.00], p=.02) were observed

in this group. Relationships between DMN × time interaction effects

and cognitive function composite scores in this group (Table S4) were

significant only for language composite scores (β = 0.03 [0.01, 0.05],

p=.001).

Weobserveda significantmain effect ofADRPexpressiononMMSE

and neuropsychological composite scores in the cMCI, adjusting for

age, sex, and education level (Table 4A). That said, the main effect of

DMN expression on MMSE and neuropsychological composite scores,

adjusted for the same variables, was non-significant (Table 4B). A sig-

nificant ADRP × time interaction was observed on MMSE (β = −0.19

[−0.28, −0.11], p <.001), memory (β = −0.03 [−0.04, −0.02], p <.001),

executive function (β = −0.03 [−0.05, −0.01], p =.004), and language

composite scores (β = −0.03 [−0.05, −0.01], p =.014). That said, a sig-

nificantDMN× time interactioneffectwas seenon theMMSE (β=0.43

[0.22, 0.65], p<.001; Table 4).

3.5 Survival analysis

Univariate Cox PH models showed that positive CSF levels of tTau

(p =.008) and pTau (p =.03) and APOE ε4 status (p =.046) were signif-

icant predictors of conversion fromMCI to dementia, whereas age and

sex were non-significant as predictors (p >.16). MCI participants were

dichotomized based on median ADRP expression at baseline, and high

values (>0.94)were significant as predictors of subsequent conversion

to dementia (p <.001; Figure 3A). By the same token, dichotomiza-

tion of MCI participants by median DMN expression at baseline did

not disclose low values (< −0.26) as predictive (p=.28). Similar results

were seen with a multivariate Cox PH model (Figure 3B): higher than

medianADRPexpression at baselinewas a significant predictor of later

conversion to dementia (hazard ratio= 5.5 [2.5, 12.5], p<.001).

4 DISCUSSION

In this study, we utilized a large longitudinal dataset to examine the

time course of expression levels for established metabolic brain net-

works inCNsubjects and inpatientswithMCI. In particular,we focused

on the ADRP, an abnormal topography expressed in AD patients,5,9

and on the DMN, a normal brain network with reduced expression in

ADand other neurodegenerative disorders.15,29 Weobserved a steady

increase in ADRP expression over time in cCN and cMCI, with only

marginal increases in their clinically stable counterparts. By contrast,

significant declines in DMN expression were observed in stable and

converting CN and MCI, consistent with a non-specific aging effect.

This observation is in line with previous resting-state functional MRI

(rs-fMRI) studies showing decreased functional connectivity in DMN

during healthy aging.30 Reductions in DMN connectivity have also

been widely reported in AD, mainly in rs-fMRI studies.31 A meta-

analysis based largely on rs-fMRI studies of AD patients revealed

consistent DMN abnormalities in individuals with clinically diagnosed

dementia,32 and steadily declining expression of the metabolic DMN

was noted in this population over 2 years.15 The results in the pre-

dementia stage have been less consistent, however.32 In the current

study, we observed a significant decline in DMN expression in CN

and MCI subjects over the span of 6 years. However, the rate of

decline did not differ between converters and non-converters, and in

the age-adjusted model, the rate was non-significant. While ADRP and

DMN share several regions, such as the posterior cingulate cortex,

precuneus, and parietal cortex, the two metabolic topographies are

not significantly correlated (r = −0.33, p >.05; voxel-wise correlation,

corrected for spatial autocorrelation22). Given the absence of a close

relationship between the two patterns, increases in ADRP expres-

sion over time are not necessarily associated with concurrent declines

in DMN. This accords with a recent rs-fMRI study that showed that

a global functional connectivity signature was superior to individual

resting-state networks, including DMN, as an indicator of conversion

to dementia.33 Likewise, using longitudinal MCI data to identify a spe-

cific disease progression pattern disclosed a significant topography

that was more closely related to ADRP than DMN (Supplementary

Materials B, Figures SB1 and SB2).

Along these lines, we found that cMCI subjects with one or more

APOE ε4 alleles had faster ADRP progression than their counterparts

with no APOE ε4 alleles, whereas the decline in DMN expression over

time was similar in both subgroups. Analogous findings were not seen

in cCN, indicating that the effect of APOE ε4 status on ADRP expres-

sion is more prominent in symptomatic individuals. Carriers of one or

more APOE ε4 alleles are at an increased risk for the development of

AD. It is believed that ApoE interactswith γ-aminobutyric acid (GABA)-

expressing interneurons to cause a dysregulation of neural networks in

the hippocampus and neocortex.34 Indeed, it has been shown thatMCI

APOE ε4 carriers have faster cognitive decline and greater longitudinal
decreases in FDG uptake compared to non-carriers.35

Conversely, the amyloid effect on ADRP expression was only seen

in sCN subjects. (It was not studied in the converter groups as these

were composed only of A+ individuals.) Of note, sCN participants

who were A+ while remaining clinically stable during the follow-up

period had slightly faster progression in ADRP expression. According

to the NIA-AA research framework, these individuals are already on

the Alzheimer’s continuum.2 Recent studies showed an increased risk

of progression to MCI and dementia in A+ CN.36,37 Amyloid build-up

occurs up to 20 years before symptom onset.38 It is therefore con-

ceivable that the follow-up period in our study was long enough to

capture the effects of amyloid deposition on ADRP expression, but not

on cognitive functioning. Along these lines, A+ sMCI had higher ADRP

expression than A− sMCI, but no difference in the ADRP progression

rate.

As expected, we observed a significant decline in neuropsychologi-

cal composite scores in the converters, but not in the non-converters.
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F IGURE 3 (A) Estimated survival curves for mild cognitive impairment (MCI) patients with high or low baseline Alzheimer’s disease-related
pattern (ADRP) expression determined bymedian value (see text). (B) Hazard ratios frommultivariate Cox proportional hazardmodel. In both
models, high baseline ADRP expression (>0.94) inMCI patients was associated with greater likelihood of subsequent conversion to dementia.

In cCN, expression levels for ADRP, a disease-related network, and

reductions in expression levels for DMN, a normal network, together

contributed to the decline in executive function and language compos-

ite scores. In cMCI, by contrast, ADRPprogression alone contributed to

further declines in neuropsychological performance. This suggests that

declining DMN activity may be more relevant at early disease stages,

whereas increasing ADRP expression has a greater role in mediating

further cognitive decline. This is in line with previous cross-sectional

studies showing inverse correlations between ADRP expression and

composite scores for memory, executive function, visuospatial per-

formance, and language in patients with dementia due to AD.6,7,9

Comparison of the two MCI groups shows that relationships of ADRP

with memory and executive function are specific for the cMCI group.

That said, significant relationships between ADRP and language com-

posite scores were noted for both sMCI and cMCI. Interestingly, a

significant relationship between DMN and language was seen for

sMCI but not cMCI. Thus, in sMCI, language function is associated

with changes in both ADRP and DMN, but these relationships were

comparatively stronger for the latter network.

We also compared the predictive value of ADRP and DMN expres-

sion in a survival analysis. This analysiswas restricted to theMCI group,

as the cCN group was too small. In the univariate survival model, CSF

biomarkers and ADRP were both significant predictors of subsequent

conversion. However, in the multivariate Cox regression model, only

high (i.e., greater than median) ADRP expression survived as signifi-

cant predictor.We note that a recently identifiedmetabolic covariance

pattern, termed the AD conversion-related pattern (ADCRP), was also

useful as a predictor of dementia in MCI patients.39 This pattern had

topographic features similar to ADRP and was derived using a related

computational algorithm. ADCRP expression has been shown to be a

better predictor of conversion than genetic biomarkers, CSF measure-

ments, regional glucose uptake measures from FDG PET, or amyloid

PET.40,41 While previous studies showed that ADRP expression was

higher in individualswithMCI thanCN42 and inA+MCI thanA−MCI,9

it remains unclear how this network compares with ADCRP in this

regard. That said, given that ADRP topographies may vary to a degree

across patient samples, we repeated the LME analyses using a previ-

ously reported AD pattern derived from a different population.6 As

with the first ADRP, we observed a monotonic increase in expression

in converters but not in stable subjects (Figure SA7), along with similar

interaction effects (SupplementaryMaterials A). However, to highlight

the robustness of the ADRP network as biomarker, we focused on

the disease-related topography that was identified in scan data from

a completely unrelated population.9

We note several limitations to this study. The presence of amyloid

pathology was shown using in vivo biomarkers and not post-mortem

examination, which could introduce an additional source of hetero-

geneity to our cohorts. However, CSF biomarkers closely reflect neu-

ropathological findings.43 Because of the limited availability of tau PET

data in this longitudinal sample, we could not assess the importance

of tau pathology on ADRP expression. This remains to be addressed

in future studies. Though we had access to the information on CSF

pTau levels, recent studies showed that these biomarkers are more

closely related to amyloid than to tau PET.44 Therefore, we did not

use this information as a substitute for tau PET. Lastly, in this study

we focused on the previously validated AD network and DMN, and

we did not study the changes in the expression of other major resting-

state networks.Whilewe cannot exclude the role of other resting-state
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networks in the pathogenesis of AD, the metabolic DMN is among the

first affected by the disease process.15

5 CONCLUSION

Elevated ADRP expression is seen in CN and MCI individuals before

conversion to MCI or dementia, respectively. Longitudinal changes in

ADRP expression relate to decline in cognitive performance. The pres-

ence of the APOE ε4 allele and amyloid positivity in CSF are associated

with faster ADRP progression. This study supports the use of ADRP

expression as amarker of disease progression and a potential predictor

of conversion to dementia inMCI patients.

Furthermore, ADRP expression can be measured longitudinally to

monitor the effect of potential new therapies in blinded clinical tri-

als of early stage patients. Network expression may provide a useful

secondary outcome variable in such studies.
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